2020qy8千赢国际娱乐数学冲刺复习:定理之函数与极限

  • 来源: 学府qy8千赢国际娱乐
  • 浏览: 65
  • 2019-09-27
  • 我要分享:
    摘要:对于2020届qy8千赢国际娱乐数学备考的学生来讲,qy8千赢国际娱乐已进入倒计时,在最后80多天的时间里,做好冲刺复习备考,数学想要获取高分,必要的公式定理一定要熟记。

      函数与极限

      1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

      2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。

      定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。

      如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。

      定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

      3、函数的极限函数极限的定义中

      定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

      函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。

      一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。

      4、极限运算法则定理:有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

      5、极限存在准则:两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。

      单调有界数列必有极限。

      6、函数的连续性:设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。

      不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。

      如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。

      定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

      定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。反三角函数在他们的定义域内都是连续的。

      定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。

      定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)

     

      推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。

    好成绩,从选择好老师开始

    赵宇 qy8千赢国际娱乐政治

    全国优秀高端教育品牌学府qy8千赢国际娱乐精品课研发团队,旨在为每一位qy8千赢国际娱乐学子提供最有效、最贴近实战的qy8千赢国际娱乐辅导课程

    立即预约

    热门专题

    已有2015名学员在学府学习

    你想学什么?写出来

  • 关于我们|
  • 法律声明|
  • 知识库|
  • 支付方式
  • Copyright© 2009-2018 北京学之府教育科技有限责任公司 (xuefu.com) All Rights Reserved 京ICP备18055609号-1